Non-deterministic self-assembly of two tile types on a lattice
نویسندگان
چکیده
Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.
منابع مشابه
Triangular and Hexagonal Tile Self-assembly Systems
We discuss theoretical aspects of the self-assembly of triangular tiles, in particular, right triangular tiles and equilateral triangular tiles, and the self-assembly of hexagonal tiles. We show that triangular tile assembly systems and square tile assembly systems cannot be simulated by each other in a non-trivial way. More precisely, there exists a deterministic square (hexagonal) tile assemb...
متن کاملSolving satisfiability in the tile assembly model with a constant-size tileset
Biological systems are far more complex and robust than systems we can engineer today. One way to increase the complexity and robustness of our engineered systems is to study how biological systems function. The tile assembly model is a highly distributed parallel model of nature’s self-assembly. Previously, I defined deterministic and nondeterministic computation in the tile assembly model and...
متن کاملTriangular and Hexagonal Tile Self-Assembly Systems Triangular and Hexagonal Tile Self-Assembly Systems
We discuss theoretical aspects of the self-assembly of triangular tiles, in particular, right triangular tiles and equilateral triangular tiles, and the self-assembly of hexagonal tiles. Contrary to intuition, we show that triangular tile assembly systems and square tile assembly systems cannot be simulated by each other in a non-trivial way. More precisely, there exists a square tile assembly ...
متن کاملParallelism, Program Size, Time, and Temperature in Self-Assembly
We settle a number of questions in variants of Winfree’s abstract Tile Assembly Model (aTAM), a model of molecular algorithmic self-assembly. In the “hierarchical” aTAM, two assemblies, both consisting of multiple tiles, are allowed to aggregate together, whereas in the “seeded” aTAM, tiles attach one at a time to a growing assembly. Adleman, Cheng, Goel, and Huang (Running Time and Program Siz...
متن کاملCombinatorial Optimization and Verification in Self-Assembly
Two of the most studied tile self-assembly models in the literature are the abstract Tile Assembly Model (aTAM) [7] and the Two-Handed Tile Assembly Model (2HAM) [4]. Both models constitute a mathematical model of self-assembly in which system components are four-sided Wang tiles with glue types assigned to each tile edge. Any pair of glue types are assigned some nonnegative interaction strengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 شماره
صفحات -
تاریخ انتشار 2016